226 research outputs found

    Real space first-principles derived semiempirical pseudopotentials applied to tunneling magnetoresistance

    Full text link
    In this letter we present a real space density functional theory (DFT) localized basis set semi-empirical pseudopotential (SEP) approach. The method is applied to iron and magnesium oxide, where bulk SEP and local spin density approximation (LSDA) band structure calculations are shown to agree within approximately 0.1 eV. Subsequently we investigate the qualitative transferability of bulk derived SEPs to Fe/MgO/Fe tunnel junctions. We find that the SEP method is particularly well suited to address the tight binding transferability problem because the transferability error at the interface can be characterized not only in orbital space (via the interface local density of states) but also in real space (via the system potential). To achieve a quantitative parameterization, we introduce the notion of ghost semi-empirical pseudopotentials extracted from the first-principles calculated Fe/MgO bonding interface. Such interface corrections are shown to be particularly necessary for barrier widths in the range of 1 nm, where interface states on opposite sides of the barrier couple effectively and play a important role in the transmission characteristics. In general the results underscore the need for separate tight binding interface and bulk parameter sets when modeling conduction through thin heterojunctions on the nanoscale.Comment: Submitted to Journal of Applied Physic

    A survey on graphs with polynomial growth

    Get PDF
    AbstractIn this paper we give an overview on connected locally finite transitive graphs with polynomial growth. We present results concerning the following topics: •Automorphism groups of graphs with polynomial growth.•Groups and graphs with linear growth.•S-transitivity.•Covering graphs.•Automorphism groups as topological groups

    Infinite primitive directed graphs

    Get PDF
    A group G of permutations of a set Ω is primitive if it acts transitively on Ω, and the only G-invariant equivalence relations on Ω are the trivial and universal relations. A digraph Γ is primitive if its automorphism group acts primitively on its vertex set, and is infinite if its vertex set is infinite. It has connectivity one if it is connected and there exists a vertex α of Γ, such that the induced digraph Γ∖{α} is not connected. If Γ has connectivity one, a lobe of Γ is a connected subgraph that is maximal subject to the condition that it does not have connectivity one. Primitive graphs (and thus digraphs) with connectivity one are necessarily infinite. The primitive graphs with connectivity one have been fully classified by Jung and Watkins: the lobes of such graphs are primitive, pairwise-isomorphic and have at least three vertices. When one considers the general case of a primitive digraph with connectivity one, however, this result no longer holds. In this paper we investigate the structure of these digraphs, and obtain a complete characterisation

    On the degree conjecture for separability of multipartite quantum states

    Full text link
    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein {\it et al.} [Phys. Rev. A \textbf{73}, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for {\it pure} multipartite quantum states, using the modified tensor product of graphs defined in [J. Phys. A: Math. Theor. \textbf{40}, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm we mean that the execution time of this algorithm increases as a polynomial in m,m, where mm is the number of parts of the quantum system. We give a counter-example to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.Comment: 17 pages, 3 figures. Comments are welcom

    Considerations for the design of an onboard air traffic situation display

    Get PDF
    The basic concept of remoting information to the cockpit is used to design and develop a computerized airborne traffic situation display device that automatically selects and presents segments of a controller's scope to the aircraft pilot via a narrow band digital data link. These data are integrated with aircraft heading and navigation information to provide a display useful in congested air space. The display can include alphanumerical symbols, air route maps, and controller instructions

    Covering Partial Cubes with Zones

    Full text link
    A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the problem of covering the cells of a line arrangement with a minimum number of lines, and the problem of finding a minimum-size fibre in a bipartite poset. For several such special cases, we give upper and lower bounds on the minimum size of a covering by zones. We also consider the computational complexity of those problems, and establish some hardness results

    Infinite motion and 2-distinguishability of graphs and groups

    Get PDF
    A group A acting faithfully on a set X is 2-distinguishable if there is a 2-coloring of X that is not preserved by any nonidentity element of A, equivalently, if there is a proper subset of X with trivial setwise stabilizer. The motion of an element a in A is the number of points of X that are moved by a, and the motion of the group A is the minimal motion of its nonidentity elements. When A is finite, the Motion Lemma says that if the motion of A is large enough (specifically at least 2 log_2 |A|), then the action is 2-distinguishable. For many situations where X has a combinatorial or algebraic structure, the Motion Lemma implies that the action of Aut(X) on X is 2-distinguishable in all but finitely many instances. We prove an infinitary version of the Motion Lemma for countably infinite permutation groups, which states that infinite motion is large enough to guarantee 2-distinguishability. From this we deduce a number of results, including the fact that every locally finite, connected graph whose automorphism group is countably infinite is 2-distinguishable. One cannot extend the Motion Lemma to uncountable permutation groups, but nonetheless we prove that (under the permutation topology) every closed permutation group with infinite motion has a dense subgroup which is 2-distinguishable. We conjecture an extension of the Motion Lemma which we expect holds for a restricted class of uncountable permutation groups, and we conclude with a list of open questions. The consequences of our results are drawn for orbit equivalence of infinite permutation groups

    The generalized 3-edge-connectivity of lexicographic product graphs

    Full text link
    The generalized kk-edge-connectivity λk(G)\lambda_k(G) of a graph GG is a generalization of the concept of edge-connectivity. The lexicographic product of two graphs GG and HH, denoted by GHG\circ H, is an important graph product. In this paper, we mainly study the generalized 3-edge-connectivity of GHG \circ H, and get upper and lower bounds of λ3(GH)\lambda_3(G \circ H). Moreover, all bounds are sharp.Comment: 14 page
    corecore